• Country/Region
  • cart   

Gaussian Beams Calculator

View All Technical Tools

Axial Distance, z (mm):

Beam Waist, ω0 (mm):

Wavelength, λ (μm):

Half Beam Diameter, ω(z) (mm): --        

Radius of Curvature, R(z) (mm): --        

Rayleigh Range, ZR (mm): --        

Rayleigh Half Diameter, ωR(b/2): --        

Half Angle Divergence, θ (mrad): --        

Gaussian Beam Calculator
$$ z_R = \frac{\pi \omega_0 ^2}{\lambda} $$
$$ \omega \! \left( z \right) = \omega_0 \sqrt{1 + \left( \frac{z}{z_R} \right) ^2} $$
$$ z_R = \frac{b}{2} $$
$$ R \! \left( z \right) = z \left[ 1 + \left( \frac{z_R}{z} \right)^2 \right] $$
$$ \theta = \frac{\lambda}{\pi \, \omega_0} $$
λ Wavelength
zR Rayleigh Range
z Axial Distance
ω(z) Half Beam Diameter
ω0 Beam Waist
b Confocal Parameter
ωR(b/2) Rayleigh Half Diameter
R(z) Radius of Curvature
θ Half Angle Divergence
Note: Results greater than 1,000,000 are rounded to infinity.


Mathematically model beam propagation of Gaussian beam using simple geometric parameters. Calculator uses first order approximations and assumes TEM00 mode to determine beam spot size in free space applications. Please note that results will vary based on beam quality and application conditions.

Related Resources and Products

Optical Lenses

Infinity Corrected Objectives

Was this content useful to you?